Multiprocessor Scheduling And Performance Evaluation Using Elitist Non Dominated Sorting Genetic Algorithm for Independent Task

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiprocessor Scheduling and Performance Evaluation Using Elitist Non Dominated Sorting Genetic Algorithm for Independent Task

Task scheduling plays an important part in the improvement of parallel and distributed systems. The problem of task scheduling has been shown to be NP hard. The time consuming is more to solve the problem in deterministic techniques. There are algorithms developed to schedule tasks for distributed environment, which focus on single objective. The problem becomes more complex, while considering ...

متن کامل

A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II

Abstract. Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) computational complexity (where is the number of objectives and is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algor...

متن کامل

A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II

Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(mN3) computational complexity (where m is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algo...

متن کامل

A Genetic Algorithm for Multiprocessor Task Scheduling

The goal of task scheduling in a multiprocessor system is to schedule dependent tasks on processors such that the processing time is minimized. This ensures optimal usage of the processing systems. However this problem is NP-hard in nature and heuristic based techniques are used to obtain a good schedule in polynomial time. Genetic Algorithms (GA) have been proposed over other heuristics becaus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal on Computational Science & Applications

سال: 2015

ISSN: 2200-0011

DOI: 10.5121/ijcsa.2015.5505